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SUMMARY

Control-volume discretization methods are applicable for problems that require good numerical approx-
imations of �uxes. Here, a class of �ux-continuous discretization methods, denoted multipoint �ux
approximation methods (MPFA), is discussed, and two di�erent approaches are derived. The result-
ing discrete equations use pressures as the only unknowns, and the �uxes will be given explicitly as
weighted sums of the discrete pressures. The two methods are denoted the O-method and the U-method,
respectively, and di�er in the way that continuity requirements are embedded in the discrete equations.
Numerical tests are provided for smooth problems and problems with discontinuous coe�cients for both
the O-method and the U-method. Convergence rates of the methods are indicated through numerical
experiments on smooth and rough grids. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We consider a control-volume discretization of the model equations

div q=Q; q= −K grad u (1)

on quadrilateral grids. The permeability K is required to be symmetric and positive de�nite.
Our applications are �ow in porous media, i.e. subsurface �ow simulation. These equations
contain an elliptic operator similar to the left-hand side of (1), and this motivates our study.
The equations have properties which constrain the choice of grid and discretization technique
used for the elliptic operator. For multiphase �ow, some variables (saturations) behave like
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solutions of hyperbolic equations, while the pressure behaves like a solution of an elliptic
equation. Phase transitions which are strongly pressure dependent, may occur.
Due to the hyperbolicity and the strongly nonlinear behaviour of the saturations, the dis-

cretization scheme should be locally conservative. Also, since the phase transitions are pressure
dependent, the pressure should be evaluated at the same point as the saturations. This moti-
vates the use of a control-volume scheme for (1), with evaluation of the dependent variable
u at the centre of the cells.
Stability for the variables with hyperbolic behaviour may be accomplished by upstream

weighting of the phase �ow. In a fully implicit scheme for the �ow equations, a simple
upstream weighting can be achieved if the method for the elliptic operator in (1) yields the
�ux at the edges as an explicit function of the potential u at some neighbouring cell centres.
The absolute permeability may vary strongly in subsurface rocks. Since the potential node

should be located at the cell centres, it is important that the discrete resistance between two
nodes honours the strong heterogeneity.
The multipoint �ux approximation (MPFA) methods are control-volume methods which are

designed to satisfy the properties described above. The methods can be applied to quadrilateral
grids [1–6] and to unstructured grids [2, 7–11], see References [1, 2] for a more complete
bibliography.
Two di�erent multipoint �ux-approximation methods have been designed and are studied

here: the O-method and the U-method. Also, di�erent versions may be formulated [6, 12].
When formulated in physical space, the O-method is symmetric for parallelogram grids [4, 13].
For general grids it fails to be symmetric. The U-method, on the other hand, is only sym-
metric for uniform parallelogram grids on homogeneous media. The symmetric O-method has
been proved to be convergent [14, 15]. In this paper we discuss the numerical convergence
properties of the O- and the U-method for cases in which symmetry is not satis�ed.
In Sections 2 and 3, the O-method and the U-method are derived, respectively, in an

alternative, new way. The derivations are presented in two dimensions, and extensions to
three dimensions are discussed. Convergence properties for both methods in two dimensions
are discussed in Section 4, and results in three dimensions are presented for the O-method in
Section 5. For related discussions of the numerical convergence, see also References
[5, 6, 16–20].

2. THE O-METHOD

In this section the equations for the MPFA O-method in two dimensions are derived. Consider
the four quadrilateral cells with a common vertex in Figure 1. The cells have cell centres
xk , and the edges have midpoints �xi. The points are enumerated locally as shown in the
�gure. Lines are drawn between the cell centres and the midpoints of the edges (shown as
dashed lines in the �gure). These lines bound an area around each vertex which is called an
interaction volume (also referred to as an interaction region in previous papers). Hence, the
interaction volume in the �gure is the polygon with corners x1 �x1x2 �x4x4 �x2x3 �x3 (Figure 2).
Within the interaction volume there are four half cell edges. Below, it will be shown

how to determine the �ux through these half edges from the interaction between the four cells.
When the �uxes through the four half edges in an interaction volume around a vertex are
determined, the procedure may be repeated for the interaction volumes of the other vertices.
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Figure 1. Interaction volume (bounded by the dashed lines).
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Figure 2. Cyclic renumbering of the points in Figure 1.

In this way, the �ux through all the half edges in a grid will be determined. When the
�uxes through the two half edges of an entire edge are known, they may be added to form an
expression for the �ux through the entire edge. An assembly procedure may then be performed
to construct a system of di�erence equations corresponding to Equation (1).
This procedure also holds for the half edges at the boundary of a domain if the bound-

ary conditions are given as homogeneous Neumann conditions. Outside the active cells a
strip of arti�cial cells is put with vanishing permeability. The same procedure as described
above for the interaction volumes around the vertices at the boundary, then gives the �ux
through the half edges at the boundary. More general boundary conditions are discussed in
Reference [16].
We now show how the �uxes through the four half edges in an interaction volume may be

determined. In each of the four cells of the interaction volume the potential u is expressed
as a linear function. The value of the potential in each cell centre determines one of the
coe�cients in each cell for these linear functions. The linear function determines the �ux
through the half edges of the cell and the potential at the half edges. We require that the
�uxes through the half edges in an interaction volume are continuous, and that the potentials
at the midpoints of the edges are continuous. This yields eight equations for the determination
of the unknown coe�cients of the linear functions in the cells.
Every linear function is described by three coe�cients in two dimensions, but one of them

is already determined by the potential value at the cell centre. Altogether there are therefore
eight unknown coe�cients for the linear functions. They are determined by the eight continuity
equations. Note that the continuity principles used here, are exactly the same as the principles
used to derive the classical two-point �ux formula [1].
Every cell is shared among four di�erent interaction volumes. The representations of linear

functions for the potential in a cell, may vary from interaction volume to interaction volume.
This does not cause any di�culties, since the linear functions are only used to determine an
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expression for the �ux. In the resulting di�erence equations, only the potential value of the
cell centres appears.
For each interaction volume, the linear functions in each cell may be determined in the fol-

lowing way. On a triangle with corners xi, i=1; 2; 3, any linear function may be described by

u(x)=
3∑
i=1
ui�i(x) (2)

Here, ui is the value of u(x) at vertex i, and �i(x) is the linear basis function de�ned by
�i(xj)= �i;j. The gradient is easily calculated to be

grad�i= − 1
2F
]i (3)

where F is the area of the triangle, and ]i is the outer normal vector of the edge located
opposite of vertex i, see Figure 3. The length of ]i equals the length of the edge to which it
is normal. For these normal vectors the following relation holds:

3∑
i=1
]i= 0 (4)

Thus, the gradient expression of the potential in the triangle may be written in the form

grad u= − 1
2F

3∑
i=1
ui]i= − 1

2F
[(u2 − u1)]2 + (u3 − u1)]3] (5)

Now consider the grid cell in Figure 4. The grid cell has index k, and its centre is xk . Using
local indices, the midpoints on the edges are denoted �x1 and �x2, and the associated normals on
the connection lines between the cell centre and the midpoints of the edges are denoted ](k)2
and ](k)1 , see Figure 4. Later, it will be suitable to let the vectors ]

(k)
i point in the direction of

increasing global cell indices. In this cell we therefore reverse the direction of these vectors.
Using formula (5) on the triangle xk �x1 �x2, yields

grad u=
1
2Fk

[](k)1 ( �u1 − uk) + ](k)2 ( �u2 − uk)] (6)

x1

x2

x3

v1

v2

v3

Figure 3. Triangle with edge normals ]i.
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xk

⎯x2

⎯x1

v (k)

n1

n2 2

v (k)
1

Figure 4. Normal vectors in cell k.

where �ui= u(�xi), i=1; 2, and uk = u(xk). Each of the edges can be associated with a global
direction, de�ned through the unit normal ni. It is convenient to also let ni point in the
direction of increasing global cell indices. The �ux through half edge i as seen from cell k
is denoted f(k)i , and may now be determined from the gradient of the potential in the cell.
For the �uxes associated with the cell in Figure 4, the following expression appears:

⎡
⎣f(k)1

f(k)2

⎤
⎦=−

[
�1nT1

�2nT2

]
Kk grad u

=− 1
2Fk

[
�1nT1

�2nT2

]
Kk[](k)1 ](k)2 ]

[
�u1 − uk
�u2 − uk

]
(7)

where �i is the length of half edge i. By de�ning the matrix

Gk =
1
2Fk

[
�1nT1

�2nT2

]
Kk[](k)1 ](k)2 ]=

1
2Fk

⎡
⎣�1nT1Kk](k)1 �1nT1Kk]

(k)
2

�2nT2Kk]
(k)
1 �2nT2Kk]

(k)
2

⎤
⎦ (8)

Equation (7) may be written in the form⎡
⎣f(k)1

f(k)2

⎤
⎦ = −Gk

[
�u1 − uk
�u2 − uk

]
(9)

Now consider the interaction volume in Figure 5. Here, the normal vectors of the edges are
denoted n1, n2, n3, and n4. With these normal vectors, the matrix Gk is de�ned for all the
four cells. Thus,

⎡
⎣f(1)1

f(1)3

⎤
⎦=−G1

[
�u1 − u1
�u3 − u1

]
;

⎡
⎣f(2)1

f(2)4

⎤
⎦ = −G2

[
u2 − �u1

�u4 − u2

]
(10)
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Figure 5. Normal vectors with local numbering in an interaction volume.

⎡
⎣f(3)2

f(3)3

⎤
⎦=−G3

[
�u2 − u3
u3 − �u3

]
;

⎡
⎣f(4)2

f(4)4

⎤
⎦ = −G4

[
u4 − �u2

u4 − �u4

]
(11)

Here, as before, uk = u(xk) and �ui= u(�xi), see Figure 5. Compared to cell 1, the directions
of ](2)1 , ]

(3)
2 , ]

(4)
1 , and ]

(4)
2 have been reversed (see Figure 5). The di�erences �u1 − u2, �u3 − u3,

�u2 − u4, and �u4 − u4 therefore appear in the expressions (10) and (11) with opposite sign.
The continuity conditions for the �uxes now yield

f1 =f
(1)
1 =f(2)1

f2 =f
(4)
2 =f(3)2

f3 =f
(3)
3 =f(1)3

f4 =f
(2)
4 =f(4)4

(12)

Using expressions (10) and (11), these equations become

f1 =−g(1)1;1( �u1 − u1)− g(1)1;2( �u3 − u1)= g(2)1;1( �u1 − u2)− g(2)1;2( �u4 − u2)
f2 = g

(4)
1;1( �u2 − u4) + g(4)1;2( �u4 − u4)= − g(3)1;1( �u2 − u3) + g(3)1;2( �u3 − u3)

f3 =−g(3)2;1( �u2 − u3) + g(3)2;2( �u3 − u3)= − g(1)2;1( �u1 − u1)− g(1)2;2( �u3 − u1)
f4 = g

(2)
2;1( �u1 − u2)− g(2)2;2( �u4 − u2)= g(4)2;1( �u2 − u4) + g(4)2;2( �u4 − u4)

(13)

Equations (13) contain the edge values �u1, �u2, �u3, and �u4. Tacitly we have here used the
same expression for the edge value of the cells at each side of an edge, and thereby implicitly
demanded continuity for the potential at the points �x1, �x2, �x3 and �x4.
If the matrix Gk is diagonal for all cell indices k, the grid is called K-orthogonal. The

system of equations (13) is then no longer coupled, and the �ux through the edges can be
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determined by eliminating the edge values �ui. This gives a two-point �ux expression. If the
grid is not K-orthogonal, the edge values �ui may still be eliminated in each interaction volume.
The procedure is described in the following way:
The �uxes of the system of equations (13) can be collected in the vector f de�ned

by f =[f1; f2; f3; f4]T. The system of equations further contains the potential values of the
cell centres u=[u1; u2; u3; u4]T and the potential values at the midpoints of the cell edges
v=[ �u1; �u2; �u3; �u4]T. The expressions on each side of the left equality sign of (13) can
therefore be written in the form

f =Cv+ Fu (14)

The expressions on each side of the right equality sign in the system of equations (13) may
after a reorganization be written in the form

Av=Bu (15)

Hence, v may be eliminated by solving Equation (15) with respect to v and substituting
v=A−1Bu into (14). This gives the �ux expression

f =Tu (16)

where

T=CA−1B+ F (17)

The entries of the matrix T are called transmissibility coe�cients. Equation (16) gives the �ux
through the half edges expressed by the potential values at the cell centres of an interaction
volume.
Having determined the �ux expression for all half edges, the two �ux expressions of the

two half edges which constitute an edge, can be added. This is shown in Figure 6, where
the cells 1, 2, 3, and 4 constitute one interaction volume, and the cells 1, 2, 5, and 6
constitute the other. The �ux stencil of the edge between cell 1 and 2 will therefore consist
of the six cells of the �gure. When the �ux expressions have been found, these may be
used in a discrete version of Equation (1). For the cell shown in Figure 7, this yields the
equation

�f1 + �f2 − �f3 − �f4 =VQ (18)

where �fi is the �ux through the entire edge i, V is the volume of the cell, and Q has been
approximated by a constant in the cell. This is a di�erence equation with u at the cell centres
as the unknowns.

x1

x5

x6
x2

x3

x4

Figure 6. Flux stencil.
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If two neighbouring cells have vanishing permeability, the corresponding row in the matrix
A vanishes, and hence, the matrix A is singular. Because there is no need to determine the
�ux across the interfaces of cells with vanishing permeability, the system may be reduced,
and this will remove the singularity. However, it is more favourable to retain the system of
unknowns and rede�ne the matrix A such that it becomes nonsingular. This is easily done
by setting the diagonal elements of the vanishing rows in the matrix A equal to 1. The new
system of equations has the same transmissibility coe�cients as the reduced system for the
interfaces between cells with nonvanishing permeability.
If cell k in Figure 4 is a parallelogram, the expression for the matrix Gk , Equation (8),

is simpli�ed. For a parallelogram-shaped cell with index k, we denote the normal vectors of
the edges with a(k)i , i=1; 2. These have lengths equal to the length of the edges. The normal
vectors are shown in Figure 8. Obviously, �ini= a

(k)
i =2 and ]

(k)
i = a(k)i =2. Further, Fk =Vk=8,

where Vk is the area of cell k. It follows that for a parallelogram-shaped cell

Gk =
1
Vk
[a(k)1 a(k)2 ]

TKk[a
(k)
1 a(k)2 ] (19)

f̄1

f̄2

f̄3

f̄4

Figure 7. Flux through the cell edge of a cell.

xk

v (k)
1

v (k)
2

a (k)
1

a (k)
2

Figure 8. Normal vectors in parallelogram cells.
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Letting Jk =[a
(k)
1 ; a

(k)
2 ], it follows that Vk = |det Jk |, and Equation (19) becomes

Gk =
1

|det Jk | J
T
kKkJk (20)

Hence, for a parallelogram cell the tensor Gk is symmetric. Equation (20) is a congruence
transformation. Thus, the tensor Gk , as given by (19), is symmetric and positive de�nite if
and only if Kk has these properties. If the tensor Gk is diagonal for all cell indices k, i.e. if

(a(k)i )
T
Kka

(k)
j =0; i �= j (21)

then the grid is K-orthogonal.
In the matrix Gk it is sometimes useful to perform a splitting, such that anisotropy and

grid skewness appear in one matrix and the mesh distances in another. If ��k is the length
of a(k)1 and ��k is the length of a

(k)
2 , then for a parallelogram grid,

Gk =
1

��k��k
DkHkDk (22)

where

Hk =
1

det[n1; n2]
[n1 n2]TKk[n1 n2]

=
1

det[n1; n2]

[
nT1Kkn1 nT1Kkn2

nT2Kkn1 nT2Kkn2

]
(23)

and

Dk =diag(��k ; ��k) (24)

Here, ni is the unit normal vector which is parallel with a
(k)
i , see Figure 8. If Hk is diagonal,

the grid is K-orthogonal.

2.1. Extension to three dimensions

The principles of the MPFA O-method carry over to three dimensions in a straightforward
manner. In three dimensions, an interaction volume contains 8 subcells and 12 interfaces, see
Figure 9. The linear functions in the eight cells are described by 32 coe�cients. Eight of these
are determined by the potential values at the cell centres. The rest of them are determined by
the two continuity conditions at each of the 12 interfaces: the �ux is required to be continuous
at the interfaces, and the potential is required to be continuous at the interface midpoints.
The generalization of the equations of Section 2 to three dimensions is straightforward.

However, a three-dimensional cell described by its eight corners, generally does not have
planar surfaces. The unit normal vector ni of an interface is therefore not a constant across
the interface. This can be accounted for by integrating the normal vector over the interface
of the subcell in question.
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Figure 9. Three-dimensional interaction volume (bold lines) with 8
subcells and 12 interfaces (thick lines).

x1

x2

x3

x4

�

�

Figure 10. Bilinear coordinates of a surface.

To determine this integral, consider the interface in Figure 10. Let the corners of the
interface be xk , k=1; : : : ; 4, and let the surface which is spanned by these points, be described
by the bilinear function

x(�; �)=�
(
�x4 + (1− �)x3

)
+ (1− �)(�x2 + (1− �)x1) (25)

where (�; �) ∈ [0; 1]× [0; 1]. The corners xi, i=1; 2; 3; 4, may not lie in the same plane. We
now calculate the surface integral n̂=

∫
S n d�, where S is the surface given by �6

1
2 and

�6 1
2 . This surface is the lower left quarter in Figure 10. A straightforward integration gives

n̂=
∫
S
n d�=

∫ 1=2

0

∫ 1=2

0

(
@x
@�

× @x
@�

)
d� d�

=
∫ 1=2

0

∫ 1=2

0
[�(x4 − x3) + (1− �)(x2 − x1)]

× [�(x4 − x2) + (1− �)(x3 − x1)] d� d�

=
1
64
[9(x2 − x1)× (x3 − x1) + 3(x2 − x1)× (x4 − x2)

+3(x4 − x3)× (x3 − x1) + (x4 − x3)× (x4 − x2)] (26)
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Figure 11. Flux stencil of an interface (bold) for the O-method in 3D.

Figure 12. Cell stencil of a cell (bold) for the O-method in 3D.

The quantity n̂ is the integrated normal vector over the interface of the subcell at the corner
x1. The vector n̂ has length equal to the area of the subcell interface.
In the three-dimensional O-method, the �ux stencil contains 18 cells (see Figure 11), and

the cell stencil contains 27 cells (see Figure 12).

3. THE U-METHOD

In this section we derive the MPFA U-method. This method is de�ned by the following
conditions. As for the O-method, the potential is written as a linear function in every cell of
the interaction volume. However, the conditions at the cell edges are di�erent. To determine
the �ux through the half edge at �x1 in Figure 13, the following continuity conditions are used.
It is required that the �uxes through the edges at the points �x1, �x3 and �x4 are continuous.
Further, the potential at �x1 has to be continuous. These conditions are the same conditions
as for the O-method. However, for the edges at the points �x3 and �x4, it is required that the
potential along the entire half edge is continuous. For each of these edges, this requirement
yields two continuity conditions for the potential.
As for the O-method, the linear functions of the U-method have 4 · 3=12 coe�cients in

the interaction volume. Four of these coe�cients are determined by the potential values in

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:939–961
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x1
x2

x4x3

x̄1

x̄4x̄3

Figure 13. Interaction lines of the U-method (dashed).

the cell centres of the four cells. The remaining eight coe�cients are determined by the three
�ux continuity conditions and the �ve potential continuity conditions.
The system of equations described above, only determines the �ux through the half edge

given by �x1 and the common vertex. To determine the �uxes through the other half edges in
the interaction volume, the procedure must be repeated for every half edge in the interaction
volume. This means that in the U-method, the linear functions of the subcells in the interaction
volume change from one half-edge evaluation to the next half-edge evaluation.
The letters O and U in the names of the methods come from the dashed lines in

Figures 1 and 13. In Figure 1 the dashed lines, which indicate the interactions between the
cells, constitute a stylized O. In Figure 13 the same interaction lines constitute a stylized U.
To express the continuity conditions of the U-method, the same expressions as in Section 2

are applied. However, since no continuity at �x2 is required, the potential u may now have
di�erent values at �x2 on each side of the edge. This is denoted by the superscripts (3) and (4),
respectively. Instead of the �ux expressions (11), the following expressions are now applied⎡

⎣f(3)2

f(3)3

⎤
⎦ = −G3

⎡
⎣ �u(3)2 − u3
u3 − �u3

⎤
⎦ ;

⎡
⎣f(4)2

f(4)4

⎤
⎦ = −G4

⎡
⎣u4 − �u(4)2

u4 − �u4

⎤
⎦ (27)

The �ux continuity conditions to determine the �ux through the half edge at �x1 then read

f1 =f
(1)
1 =f(2)1

f3 =f
(3)
3 =f(1)3

f4 =f
(2)
4 =f(4)4

(28)

The quantities which are used in these equations, are given in (10) and (27). As in Section 2,
the continuity of the potential at the points �x1, �x3 and �x4 are contained here. To insure the
continuity of the potentials along the two half edges at �x3 and �x4, the potential function in
all the cells are needed. For cell k in Figure 4, the gradient is given by Equation (6). Hence,
the linear function is expressed by

u(k)(x) = uk + (x − xk) grad u(k)

= uk +
1
2Fk

(x − xk)T[](k)1 ](k)2 ]
[
�u1 − uk
�u2 − uk

]
(29)
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The linear functions of all the cells in Figure 5 may be expressed in this way. The remaining
potential continuity conditions read

u(1)( �x5) = u(3)( �x5)

u(2)( �x6) = u(4)( �x6)
(30)

where �x5 �= �x3 is any point on the edge between the cells 1 and 3, and �x6 �= �x4 is any point
on the edge between the cells 2 and 4.
The system of equations (28), (30) may be treated in the same way as the system of

equations in Section 2. The unknown potential values at the edges are assembled in the
vector v=[ �u1; �u

(3)
2 ; �u

(4)
2 ; �u3; �u4]

T, whereas the potential values of the cell centres as before
are given by the vector u=[u1; u2; u3; u4]T. The system of equations is written in the form
Av=Bu, and the solution v=A−1Bu is substituted into the �ux expression f =Cv+Fu, where
f =[f1; f2; f3]T. However, in the resulting matrix T=CA−1B+ F, only the �rst row is used.
The �ux expressions corresponding to the last two rows of T are not used.
To determine the �ux expressions of the other half-edges in Figure 1, the procedure must be

repeated with interchanged continuity conditions. This may be accomplished by a renumbering
of the points in Figure 1. For example, to determine the �ux through the half edge associated
with �x4 in Figure 1, all the points may be cyclically renumbered, as shown in Figure 2. With
the new numbering the procedure described above yields the �ux expression for the half edge
associated with �x1 in Figure 2.
When all the �ux expressions for the half edges in the grid have been found, the �ux

expressions for the entire edges are determined by assembling half-edge �uxes as for the
O-method. The �ux stencil of an entire edge contains six cells, and the cell stencil contains
nine cells.
If the grid is K-orthogonal, Equations (28) are decoupled. As for the O-method, the usual

two-point �ux approximation then appears.

3.1. Extension to three dimensions

The U-method can be extended to three dimensions. When the �ux through the quarter inter-
face which is shaded in Figure 14, is to be determined, the following continuity conditions
for the shown interfaces are applied. The �ux must be continuous at all of the �ve interfaces.
At the corner of the shading (i.e. at the midpoint of the cell surface) the potential must be
continuous. At the other four interfaces, the potential must be continuous along the entire sur-
face. The linear functions of the six cells have 6 · 4=24 degrees of freedom. Six of them are

Figure 14. Edges with continuity conditions for the U-method in 3D.
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Figure 15. Flux stencil of an interface (bold) for the U-method in 3D.

Figure 16. Cell stencil of a cell (bold) for the U-method in 3D.

determined by the potential values at the cell centres. The remaining 18 degrees of freedom
are determined by the above continuity requirements.
In the three-dimensional U-method, the �ux stencil contains 10 cells (see Figure 15), and

the cell stencil contains 19 cells (see Figure 16).

4. TWO-DIMENSIONAL RESULTS

Convergence has been proved for a symmetric version of the MPFA O-method [14, 15].
However, the proved error bounds are not sharp. Also, the convergence properties of the
nonsymmetric version of the O-method (i.e. the O-method in physical space as described in
Section 2) are better [5].
In this section we compare numerical convergence properties of the MPFA O-method and

U-method on quadrilateral grids. Both methods yield in general a nonsymmetric method.
For all test cases, we compute the discrete L2 norm of the error. This norm is de�ned in
Reference [16]. For bounded solutions, we also compute the L∞ norm of the error. The
convergence rate for the O-method has previously been reported for smooth grids in
Reference [16] and for rough grids in Reference [5]. See also References [6, 18].
Three groups of test cases are considered. All cases are simulated on the grid shown in

Figure 17(a). The boundary conditions are given by Dirichlet conditions, and are implemented
by interpolation. In �eld applications, the grids are rough, and to test the robustness of the
methods on such grids, the grid points are perturbed by a random displacement of O(h). This
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Figure 17. Simulation grids and domain: (a) smooth grid; (b) rough grid; and (c) corner with regions.
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Figure 18. Convergence behaviour for the smooth solution (31) on smooth grids.
Left: Pressure. Right: Edge normal �ow densities.

perturbation is performed on each re�nement level. A rough grid is shown in Figure 17(b).
A precise de�nition of smooth and rough grids is not given here, but earlier testing [5] has
shown that O(

h2
)
perturbations of the grid shown in Figure 17(a) yield the same convergence

properties as the unperturbed grid.
Note that, since the perturbations are random, all the rough grids are di�erent. This also

holds for the solutions shown in the same plot. Hence, for the rough grids, a comparison of
solutions at the same re�nement level must be done with some caution.
The �rst test cases are performed with the solution

u(x; y)= cosh(�x) cos(�y) (31)

of the problem (1) on an isotropic, homogeneous medium.
The test results are shown in Figure 18 for the smooth grids and in Figure 19 for the rough

grids. For the pressure, the convergence rate is the same for the O-method and the U-method.
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Figure 19. Convergence behaviour for the smooth solution (31) on rough grids.
Left: Pressure. Right: Edge normal �ow densities.

The convergence rate is h2 on smooth as well as on rough grids. This holds both in L2 norm
and in L∞ norm.
For the normal �ow densities, the convergence rate in L2 norm on smooth grids is h2 for

the O-method, whereas the U-method has a convergence rate h1:6. The reduced rate for the
U-method seems to stem from the jump in aspect ratio of the grid cells at the boundary, see
Figure 17(a). On rough grids the convergence rate drops down to h for both methods. In L∞

norm the convergence rate for the normal �ow densities is h on smooth grids. On rough grids
the convergence rate seems to be O(h) or somewhat lower.
The next test cases are performed on the domain shown in Figure 17(c) where each of the

regions labelled 1–4 may have di�erent permeabilities. The permeabilities in regions 1–4 are
chosen such that a singularity at the corner where the regions meet, appears. We assume that
the medium is isotropic, and use !=2�=3=120◦. Let the distance from the corner be r and
the angle from the x-axis be 	. In the case where the permeabilities in the regions 2, 3, and
4 are equal, there exists a solution of the form

u(r; 	)= r�
{
cos �(	− �=3) for 	 ∈ [0; 2�=3]
d cos �(4�=3− 	) for 	 ∈ [2�=3; 2�]

(32)

where �=(3=�) arctan
√
1 + 2=
 and d= cos(��=3)= cos(2��=3). Here, 
= k1=k2 is the per-

meability ratio. For 
¿0 exponents � ∈ [0:75; 1:5] are obtained. Solution (32) belongs to the
space H 1+�−� for any �¿0.
Two cases with the solution (32) are tested. In the �rst case 
=10−3. This yields � ≈

1:4787. The results are shown in Figure 20 for the smooth grids and in Figure 21 for the
rough grids. In the second case 
=102 and � ≈ 0:7547. The results are shown in Figure 22
for the smooth grids and in Figure 23 for the rough grids.
The convergence rate is the same for both methods. For the pressure, the convergence rate

in L2 norm is hmin{2;2�} on smooth as well as on rough grids. In L∞ norm the convergence
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Figure 20. Convergence behaviour for the H 2:47 solution (32) on smooth grids.
Left: Pressure. Right: Edge normal �ow densities.
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Figure 21. Convergence behaviour for the H 2:47 solution (32) on rough grids.
Left: Pressure. Right: Edge normal �ow densities.

rate is h�. This holds on smooth grids, and it also seems to hold on rough grids when the
rate is measured over more than one re�nement level.
For the normal �ow densities, the convergence rate in L2 norm on smooth grids is h�. On

rough grids the convergence rate drops down to h1 for �¿1 and remains at h� for �61. In
L∞ norm the convergence rate on smooth grids is h�−1 for �¿1. On rough grids convergence
cannot be claimed in L∞ norm.
If the permeabilities in Figure 17(c) are equal in region 1 and 3, and likewise the perme-

abilities in region 2 and 4 equal, solutions with lower regularity exist. The solution satis�es
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Figure 22. Convergence behaviour for the H 1:75 solution (32) on smooth grids.
Left: Pressure. Right: Edge normal �ow densities.
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Figure 23. Convergence behaviour for the H 1:75 solution (32) on rough grids.
Left: Pressure. Right: Edge normal �ow densities.

u(r; 	)= − u(r; 	− �) with

u(r; 	)= r�
{
cos �(	− �=3) for 	 ∈ [0; 2�=3]
d sin �(5�=6− 	) for 	 ∈ [2�=3; �]

(33)

Here, �=(6=�) arctan
(
1=

√
1 + 2


)
and d= cos(��=3)= sin(��=6). As in the previous test ex-

ample, 
= k1=k2 is the permeability ratio. For 
¿0 exponents � ∈ [0; 1:5] are obtained, for
which solution (33) belongs to the space H 1+�−� for any �¿0.
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Figure 24. Convergence behaviour for the H 1:69 solution (33) on smooth grids.
Left: Pressure. Right: Edge normal �ow densities.
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Figure 25. Convergence behaviour for the H 1:41 solution (33) on smooth grids.
Left: Pressure. Right: Edge normal �ow densities.

Three cases with solution (33) are tested. These cases are only run on the smooth grid
in Figure 17(a). The three cases are given by 
=3 (� ≈ 0:6902), 
=10 (� ≈ 0:4103) and

=102 (� ≈ 0:1345), respectively. The results are shown in Figures 24–26.
The convergence rate is the same for both the O-method and the U-method. For the pressure,

the convergence rate in L2 norm is h2�. In L∞ norm the convergence rate is h� for the �rst two
cases. The last case (� ≈ 0:1345) did not reach an asymptotic behaviour on the �nest grids
and had a reduction by h0:05 in the last level. For the normal �ow densities, the convergence
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Figure 26. Convergence behaviour for the H 1:13 solution (33) on smooth grids.
Left: Pressure. Right: Edge normal �ow densities.

rate in L2 norm is h�. However, for the last case (� ≈ 0:1345) an asymptotic behaviour was
not reached until the last re�nement level.
In summary, the performed test runs indicate the following error bounds on rough grids:

‖uh − u‖L2 ∼ hmin{2;2�} (34)

‖qh − q‖L2 ∼ hmin{1; �} (35)

‖uh − u‖L∞ ∼ hmin{2; �} (36)

where q= q · n is the normal �ow density. For smooth solutions, ‖qh − q‖L∞ seems to be
O(h) or somewhat lower, but the test runs do not clarify the regularity required to reach this
convergence rate.
On smooth grids, the convergence rates for the pressure is the same as for rough grids. For

the normal �ow densities, however, an increased convergence rate is observed

‖qh − q‖L2 ∼ hmin{2; �} (37)

‖qh − q‖L∞ ∼ hmin{1; �−1}; �¿1 (38)

Due to boundary e�ects, however, the highest convergence rate of Equation (37) may be
lower than h2 for the U-method.
The L∞ convergence rates which are indicated above, must be taken with precaution. For

example, it is by no means clear that only the Sobolev-space regularity and the grid smoothness
determine the L∞ convergence rates. A property like the monotonicity of the method [21]
might be important for these convergence rates.
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5. THREE-DIMENSIONAL RESULTS

Next, numerical test runs on three-dimensional grids in physical space will be performed.
When going from two dimensions to three dimensions, the general positioning of corners
of the control volumes implies that bilinear cell surfaces may arise. These surfaces may for
some methods create additional di�culties for handling of �uxes across cell interfaces [22].
In particular, methods that rely on a transformation from the physical grid to an orthogonal
reference grid will not be able to reproduce uniform �ow exactly.
This is not the case with the O-method discretization in physical space. As an example,

a 3D grid created by random h perturbations of the corners in all directions of an initial
orthogonal grid, is shown in Figure 27. The numerical pressure is exact to working precision
(10−16) when uniform �ow is used as a reference test for arbitrary conforming grids. This
is explained by the way the transmissibilities are derived in 3D in physical space. The term
− ∫

S n
TK grad u d� for each edge is discretized by the assumption of piecewise linear pressure.

The normal vector n is parametrized by (25) for general bilinear surfaces, and − ∫
S n d� is

hence exact by (26). For linear pressure, grad u is constant, and the �ux discretization that the
transmissibility calculations apply, is therefore exact. Together with the uniform �ow result
for 2D cases in Reference [16], this then implies that the pressure solution for the O-method
in 3D is exact for uniform �ow, and is veri�ed by our numerical results.
A case of nonuniform �ow is next tested for our 3D implementation of the O-method. It

is trivial to verify that the function

u(x; y; z)= sin(
√
2�x) sinh(�y) sinh(�z) (39)

is a solution to problem (1) when the medium is isotropic and homogeneous. The L2 conver-
gence is examined for both the pressures and normal �ow densities for the set of i-edges in a
3D grid similar to that of Figure 27. The results are depicted in Figure 28 for di�erent grids.
Dirichlet boundary conditions which correspond to the reference solution above, are imple-
mented by interpolation. The �rst test shows the numerical results for uniform re�nement of

Figure 27. 3D grid. All corners perturbed randomly in x, y, and z direction.
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Figure 28. Convergence in L2 norm for pressure and edge normal �ow
densities of i-edges of grids in 3D.

parallelepiped grids on a �xed domain. As is expected, both the pressure and normal �ow
densities converge as h2 when the grid is re�ned uniformly.
The second test shows the convergence behaviour for an orthogonal initial grid for which all

corners are arbitrarily perturbed by terms of order h in all directions (for which nonoverlapping
grid cells do not occur). The pressure still converges as h2, but the normal �ow density
convergence decreases to h, which is expected from the results in 2D.
The 3D test runs agree with the conclusions for the convergence rates in 2D.

6. CONCLUSIONS

We have presented numerical convergence tests for the MPFA O-method and U-method.
The test examples indicate that these methods have equal convergence rates, though boundary
e�ects may reduce the highest convergence rate for the normal �ow densities in the U-method.
If the pressure is in H 1+�, �¿0, the found L2 convergence order on rough grids is min{2; 2�}
for the pressure and min{1; �} for the normal �ow densities. For smooth grids the convergence
order for the normal �ow densities increases to min{2; �} for the O-method.
The O-method is exact for uniform �ow on rough grids. This also holds in three dimensions,

where the cells may have nonplanar surfaces.
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